Tuesday, May 19, 2009
String of Pearls
Two friends found a necklace (a loop) of pearls. There are some black pearls and some white pearls, all otherwise indistinguishable. They want to cut the necklace into two parts (with two cuts) so that the number of black pearls on each side match, and the number of white pearls match. They cannot cut the pearls themselves, but instead cut the necklace between the pearls. There are an even number of black pearls, and an even number of white pearls.
Prove that you can always do it, or else find a case where it cannot be done.
After arguing and working on it for a 15 minutes, they came up with an argument. But afterwards Lizzy said she didn't like it much (compared for example to Sunday's freecell problem).
This problem comes from one of Charles Leiserson's papers (I don't remember which) on VLSI layout.
Subscribe to:
Post Comments (Atom)
Blog Archive
About Me
- Bradley C. Kuszmaul
- I work in the Google cloud now. Previously I worked in the Oracle cloud and before that I was research faculty at MIT, and Chief Architect at Tokutek. Before that I worked at Akamai, was a Yale CS professor, and worked at Thinking Machines.
No comments:
Post a Comment